
Part 4. Integration v1 2019-20

Definition

Definition 4.1 A partition P of [a, b] is a finite set of points {x0, x1, ..., xn}
with a = x0 < x1 < ... < xn = b.

Example 4.2
{

0, 1
4
, 1
3
, 7
8
, 1
}

and
{

0, 1
100

, 3
100

, 1
}

are partitions of [0, 1].

The following definitions are not universal but I find them very useful.

Definition 4.3 For each n ≥ 1 the arithmetic partition of [a, b] is

Pn =

{

a+
(b− a)

n
i : 0 ≤ i ≤ n

}

.

Example 4.4 For the interval [2, 3] with n = 4, the arithmetic partition is

P4 =

{

2,
9

4
,
10

4
,
11

4
, 3

}

=

{

2 +
3− 2

4
i : 0 ≤ i ≤ 4

}

.

Definition 4.5 Assume 0 < a < b. For each n ≥ 1 the geometric parti-

tion of [a, b] is

Qn =

{

a

(

b

a

)i/n

: 0 ≤ i ≤ n

}

=
{

aηi : 0 ≤ i ≤ n
}

,

where η = (b/a)1/n.

Example 4.6 For the interval [2, 10] with n = 3, the geometric partition is

Q3 =
{

2, 2× 51/3, 2× 52/3, 10
}

=

{

2

(

10

2

)i/3

: 0 ≤ i ≤ 3

}

.

A partition of [a, b] divides the interval into n sub-intervals [xi−1, xi] for
1 ≤ i ≤ n. In an arithmetic partition

xi = xi−1 +
b− a

n

for all 1 ≤ i ≤ n. In a geometric partition xi = ηxi−1 for all 1 ≤ i ≤ n.

Let f be a bounded function on [a, b], so there exist m and M such that
m ≤ f(x) ≤ M for all x ∈ [a, b]. For each 1 ≤ i ≤ n consider the set

{f(x) : x ∈ [xi−1, xi]} .
It is a non-empty set, bounded above by M , and from below by m. Hence
by the Completeness of R the set has a least upper bound and greatest lower
bound. Therefore we can make the definition
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Definition 4.7 For 1 ≤ i ≤ n set

Mi = lub {f(x) : x ∈ [xi−1, xi]} ,

and
mi = glb {f(x) : x ∈ [xi−1, xi]} .

Definition 4.8 For f bounded on [a, b] the Upper Sum for f with the
partition P is

U(P , f) =
n
∑

i=1

Mi (xi − xi−1)

and the Lower Sum is

L(P , f) =
n
∑

i=1

mi (xi − xi−1) .

Advice for the exam. I’m sure that it need not be stressed
that you need to remember these definitions for the exam, but
how?

What do the Upper and Lower sums represent? Both are
summations of terms of the form m (s− t) which you might think
of as the area of a rectangle with base the interval [t, s] and height
m. Thus the Upper and Lower sums represent the sums of areas
of rectangles with bases [xi−1, xi]. These bases can only intersect
at the end points so the Upper and Lower sums represent the
areas of unions of disjoint rectangles. How are these areas related
to the function f?
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Example 4.9 An upper sum represents the sum of the areas of the rectangles
in the diagram.

[ ]
b

a

So you can think of the upper sum as over -estimating the area under the
graph.

Example 4.10 A lower sum represents the sum of the areas of the rectangles
in the diagram.

a b

[ ]

So you can think of the lower sum as under -estimating the area under the
graph.

Be careful, I have drawn a “nice, smooth” function, the situation might
look different with more “pathological” functions. Also be careful because I
have drawn only non-negative functions. I suggest you look at what happens
if the function should be negative for some x. Some of the rectangles may
well have a negative area!

If we could assign a measure of size to the region under a graph we might
expect it to be

• less than the areas measured by U(P , f) for all P , yet

• greater than those measured by L(P , f) for all P .
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Thus we will be interested in the

• “smallest values” taken by U(P , f) as P varies, and the

• “largest values” of L(P , f) as P varies.

Examples

Example 4.11 Let f : [2, 4] → R : x 7→ 3x−8. Find U(Pn, f) and L(Pn, f) ,
for the arithmetic partitions Pn.

Solution In the notation above, a = 2, b = 4, so b− a = 2 and thus

Pn =

{

2 +
2i

n
: 0 ≤ i ≤ n

}

.

Then

[xi−1, xi] =

[

2 +
2

n
(i− 1) , 2 +

2i

n

]

and xi − xi−1 =
2

n

for all i ≥ 1. On the interval [2, 4] the function f (x) = 3x − 8 is increasing
so

Mi = lub
[xi−1,xi]

f(x) = f(xi) = 3xi − 8

= 3

(

2 +
2i

n

)

− 8 =
6i

n
− 2.

Similarly

mi = glb
[xi−1,xi]

f(x) = f(xi−1) = 3xi−1 − 8

= 3

(

2 +
2 (i− 1)

n

)

− 8 =
6 (i− 1)

n
− 2.

Because Mi ‘looks simpler’ than mi I first consider the upper sum:

U(Pn, f) =
n
∑

i=1

(

6i

n
− 2

)

2

n

=
12

n2

n
∑

i=1

i− 4

n

n
∑

i=1

1 =
12

n2

n (n+ 1)

2
− 4

n
n

=
6 (n+ 1)

n
− 4 = 2 +

6

n
.
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Similarly,

L(Pn, f) =
n
∑

i=1

(

6 (i− 1)

n
− 2

)

2

n
.

You could evaluate this as we did for U(Pn, f) but why do the same work
twice? I suggest trying to reuse work done for U(Pn, f) by first changing the
variable to j = i− 1 when

L(Pn, f) =
n−1
∑

j=0

(

6j

n
− 2

)

2

n
.

Compared to U(Pn, f) this has an additional j = 0 term and is missing the
j = n term. We rearrange with the intent of rewriting the sum in terms of
U(Pn, f) :

L(Pn, f) =
n
∑

j=1

(

6j

n
− 2

)

2

n
+

(

6× 0

n
− 2

)

2

n
−
(

6n

n
− 2

)

2

n

= U(Pn, f)−
12

n

=

(

2 +
6

n

)

− 12

n
.

Here we have used the result for U(Pn, f) found above; no use doing the
same work twice! �

Note 1 that in the Upper and Lower sums for an arithmetic partition the lengths

of the sub-intervals do not depend on i, in fact xi − xi−1 = (b− a) /n. So

U(Pn, f) =
b− a

n

n
∑

i=1

Mi and L(Pn, f) =
b− a

n

n
∑

i=1

mi.
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Note 2 If f is increasing on [a, b] then

mi = glb
[xi−1,xi]

f(x) = f(xi−1) and Mi = lub
[xi−1,xi]

f(x) = f(xi) .

Thus

mi = f(xi−1) = Mi−1,

though only for 2 ≤ i ≤ m. So with the arithmetic partition Pn of [a, b] ,

L(Pn, f) =
b− a

n

n
∑

i=1

mi =
b− a

n

(

m1 +
n
∑

i=2

mi

)

=
b− a

n

(

m1 +
n
∑

i=2

Mi−1

)

=
b− a

n

(

m1 +
n−1
∑

i=1

Mj

)

=
b− a

n

(

m1 +
n
∑

i=1

Mj −Mn

)

.

Yet
b− a

n

n
∑

i=1

Mj = U(Pn, f) ,

and, since f is increasing, m1 = f(a) and Mn = f(b). Hence

L(Pn, f) = U(Pn, f) +
b− a

n
(f(a)− f(b)) . (1)

Be aware that we are assuming that f is increasing in which case f (b) ≥
f (a), i.e. f (a)− f (b) ≤ 0 so the above result fits in with the expectation that

L(Pn, f) ≤ U(Pn, f). This last result shows that we need only calculate one of

L(Pn, f) or U(Pn, f), the other following quickly from (1). End of Note 2

Example 4.12 Let

f : [2, 4] → R : x 7→ 1

x2
.

Find U(Qn, f) and L(Qn, f) for the geometric partitions Qn of [2, 4].

Solution In the notation above a = 2, b = 4, so

η =

(

4

2

)1/n

= 21/n,
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in which case ηn = 2. Then

Qn =
{

2ηi : 0 ≤ i ≤ n
}

.

A general sub-interval is

[xi−1, xi] =
[

2ηi−1, 2ηi
]

and

xi − xi−1 = 2ηi − 2ηi−1 = 2ηi
(

1− 1

η

)

.

It simplifies calculations if you write the difference in this way, with only
one occurrence of the i.

In this example f is decreasing so

Mi = lub
[xi−1,xi]

f(x) = f(xi−1) =
1

x2
i−1

=
1

(2ηi−1)2
.

Similarly,

mi = glb
[xi−1,xi]

f(x) = f(xi) =
1

x2
i

=
1

(2ηi)2
.

Since the expression for mi is slightly simpler than that for Mi we start by
examining the Lower Bound Sum

L(Qn, f) =
n
∑

i=1

mi (xi − xi−1)

=
n
∑

i=1

1

(2ηi)2
2ηi
(

1− 1

η

)

=
1

2

(

1− 1

η

) n
∑

i=1

1

ηi

=
1

2

(

1− 1

η

) n
∑

i=1

(

1

η

)i

=
1

2

(

1− 1

η

) 1
η

(

1−
(

1
η

)n)

(

1− 1
η

)

on summing the geometric series, using
∑n

i=1 x
i = x (1− xn) / (1− x). Con-

tinuing, using ηn = 2,

L(Qn, f) =
1

2η

(

1− 1

2

)

=
1

4η
.
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For the Upper Sum we start by noting that

Mi =
1

(2ηi−1)2
=

η2

(2ηi)2
= η2mi.

Then we can write the Upper Sum in terms of the Lower Sum as

U(Qn, f) =
n
∑

i=1

Mi (xi − xi−1) =
n
∑

i=1

η2mi (xi − xi−1)

= η2L(Qn, f) =
η

4
.

using the result for the lower sum; again no use doing the same work twice!
�

Returning to the Theory

Recall that for a partition P we defined

Mi = lub {f(x) : x ∈ [xi−1, xi]} ,
and

mi = glb {f(x) : x ∈ [xi−1, xi]} ,
for 1 ≤ i ≤ n.

Because we will use the following observation again we write it as a lemma:

Lemma 4.13 If f is bounded on I ⊆ R and J ⊆ I then

glb
I
f ≤ glb

J
f and lub

I
f ≥ lub

J
f.

Proof If m = glbIf then m is a lower bound for the set of values f(x) for

x ∈ I. Thus m is also a lower bound for f evaluated on x ∈ J ⊆ I. Hence m
is less than or equal to the greatest of all lower bounds for the set of values
of f as x varies over J . That is m ≤ glbJf . The first result now follows.

If M = lubIf then M is an upper bound for the set of values of f(x) for

x ∈ I. Thus M is an upper bound for f evaluated on x ∈ J ⊆ I. Hence M
is greater than or equal to the least of all upper bounds for f on J . That is
M ≥ lubjf . The second result follows. �

With I = [a, b] and J = [xi−1, xi] we get m ≤ mi and M ≥ Mi for all
i : 1 ≤ i ≤ n. Combine as,

m ≤ mi ≤ Mi ≤ M

for 1 ≤ i ≤ n.
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Lemma 4.14 For all partitions P of [a, b] we have for any function f bounded
on [a, b] ,

m (b− a) ≤ L(P , f) ≤ U(P , f) ≤ M (b− a) .

Proof Consider
m ≤ mi ≤ Mi ≤ M

for all 1 ≤ i ≤ n. Multiply through by xi − xi−1 and sum over 1 ≤ i ≤ n to
get

m
n
∑

i=1

(xi − xi−1) ≤
n
∑

i=1

mi (xi − xi−1) ≤
n
∑

i=1

Mi (xi − xi−1) ≤ M
n
∑

i=1

(xi − xi−1) .

This is the required result since the sub-intervals, [xi−1, xi] are disjoint

(other than at their end points) and cover [a, b] and so the sum of their
lengths equals the length of [a, b], i.e.

n
∑

i=1

(xi − xi−1) = b− a.

�

Recall that we are interested in the

• “smallest values” taken by U(P , f) as P varies, and the

• “largest values” of L(P , f) as P varies.

From Lemma 4.14 we see that, for f bounded on [a, b] , the set of real
numbers

{L(P , f) : P a partition of [a, b]}
is a non-empty set bounded above, by M(b− a). So by Completeness of
R this set has a least upper bound.

Similarly, for f bounded on [a, b] , the set of real numbers

{U(P , f) : P a partition of [a, b]}

is a non-empty set bounded below, by m(b− a). So by Completeness of
R this set has a greatest lower bound.

9



Definition 4.15 For f bounded on [a, b], the Upper Integral is

∫ b

a

f = glb {U(P , f) : P a partition of [a, b]} (2)

and the Lower Integral is
∫ b

a

f = lub {L(P , f) : P a partition of [a, b]} .

Note that the upper and lower integrals can always be calculated for a
bounded function on a bounded interval.

Advice for exam. In remembering these definitions it is simple
to recall that the upper integral is related to the upper sums and
the lower integral to the lower sums. But students often get the
glb and lub confused. You could think about the upper integral as
the least (i.e. a lower bound) of all overestimates whilst the lower
integral is the largest (i.e. an upper bound) of all underestimates.

It is suggestive of the words used that the upper integral is greater than
the lower integral, but this has to be proved.

Definition 4.16 If P and D are two partitions of a set which satisfy P ⊆ D,
we say that D is a refinement of P. (We also say that D is finer than P
and, equivalently, P is coarser than D.)

Proposition 4.17 If f is bounded on [a, b] and D is a refinement of P, both
partitions of [a, b], then

L(P , f) ≤ L(D, f) and U(D, f) ≤ U(P , f) .

Diagram for lower sums. As we increase the number of points in the partition
the lower sum increases.

[ ]
b

a
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Proof for lower bound sums. Let P = {xi : 0 ≤ i ≤ n}, so

L(P , f) =
n
∑

i=1

mi (xi − xi−1) .

Choose any y ∈ D \ P . Thus there must exist 1 ≤ j ≤ n such that
xj−1 < y < xj. Then

L(P ∪ {y} , f) =
∑

i 6=j

mi (xi − xi−1) + glbf
[xj−1,y]

(y − xj−1) + glbf
[y,xj ]

(xj − y) . (3)

We then use the facts that [xj−1, y] , [y, xj] ⊆ [xj−1, xi] along with Lemma
4.13 to deduce

glbf
[xj−1,y]

≥ glbf
[xj−1,xj ]

= mj and glbf
[y,xj ]

≥ glbf
[xj−1,xj ]

= mj.

Hence RHS(3) is

≥
∑

i 6=j

mi (xi − xi−1) +mj (y − xj−1) +mj (xj − y)

=
∑

i 6=j

mi (xi − xi−1) +mj {(y − xj−1) + (xj − y)}

=
∑

i 6=j

mi (xi − xi−1) +mj (xj − xj−1) = L (P , f) .

That is, L(P ∪ {y} , f) ≥ L(P , f). Continue adding in points from D \P , to
get L(D, f) ≥ L(P , f).

I leave the proof for upper bound sums, namely that U(D, f) ≤ U(P , f) ,
to the students. �

So, as you add in points to a partition the values of the lower sum in-
creases, presumably getting closer to the value of the lower integral. Similarly
the values of the upper sums decrease, hopefully getting closer to the value
of the upper integral. Maybe by using a sequence of ever finer partitions one
can say something about the upper and lower integrals.

Given any partition P it is trivially the case that L(P , f) ≤ U(P , f). Yet
far more is true.
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Lemma 4.18 For f bounded on [a, b], and any two partitions Q and R of
[a, b] we have

L(Q, f) ≤ U(R, f) .

Proof Let Q and R be any two partitions of [a, b]. Then Q ∪ R is a
refinement of both Q and R. So

L(Q, f) ≤ L(Q ∪R, f) by Lemma 4.17,

≤ U(Q ∪R, f) by Lemma 4.14

≤ U(R, f) by Lemma 4.17 again.

�

As noted earlier, in using the words ‘over’ and ‘under’ you may be im-
plicitly assuming the following result. It requires a proof!

Corollary 4.19 If f is any bounded function on [a, b] then

∫ b

a

f ≤
∫ b

a

f.

Proof Fix R and vary Q. From L(Q, f) ≤ U(R, f) we thus see that U(R, f)

is an upper bound for the set {L(Q, f) : Q}. But by definition
∫ b

a
f is the

least of all upper bounds for this set, hence
∫ b

a
f ≤ U(R, f).

Now varyR and we see that
∫ b

a
f is a lower bound for the set {U(R, f) : R}.

But by definition
∫ b

a
f is the greatest of all lower bounds on this set, so

∫ b

a

f ≤
∫ b

a

f

as required. �

Definition 4.20 A bounded function f on [a, b] is Riemann integrable

over [a, b] if
∫ b

a

f =

∫ b

a

f.

The common value is called the (Riemann) integral and is denoted by
∫ b

a
f

or
∫ b

a
f (x) dx.
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Note To save time in lectures I will often write R-
∫

ation and R-
∫

able in
place of integration and integrable.

Basic Result For the examples below we need that, for any partition P of
[a, b], we have

L(P , f) ≤
∫ b

a

f by definition of lower integral,

≤
∫ b

a

f by the Corollary

≤ U(P , f) by definition of upper integral.

Thus we get the fundamental

L(P , f) ≤
∫ b

a

f ≤
∫ b

a

f ≤ U(P , f) . (4)

Advice for exams. Remember this!

Return to Examples

Example 4.21 Let

f : [2, 4] → R : x 7→ 3x− 8.

Prove, by verifying the definition, that f is Riemann integrable over [2, 4].
What is the value of the integral?

Solution We have already calculated the Upper and Lower sums with P =
Pn, the arithmetic partitions. Substituting those earlier results into (4) gives

2− 6

n
≤
∫ 4

2

f(x) dx ≤
∫ 4

2

f(x) dx ≤ 2 +
6

n

for all n ≥ 1. Let n → ∞ to see that

2 ≤
∫ 4

2

f(x) dx ≤
∫ 4

2

f(x) dx ≤ 2,

which can only be true if we have equality throughout. In particular we have

equality in the centre, i.e.
∫ 4

2
f(x) dx =

∫ 4

2
f(x) dx, and so, by definition, the

function is Riemann integrable over [2, 4]. The common value, 2, is therefore
the value of the integral. �
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Advice for exam. To prove a function is integrable and then
find the value of the integral you must not only remember (4) but
also the end of the proof, namely let n → ∞ to get a common
value for the lower and upper integrals and tell me that this (1)
verifies the definition that the function is integrable and (2) that
this common value is the value of the integral.

Example 4.22 Let

f : [2, 4] → R : x 7→ 1

x2
.

Prove, by verifying the definition, that f is Riemann integrable over [2, 4].
What is the value of the integral?

Solution We have worked out the Upper and Lower sums with geometric
partitions Qn. Substituting those earlier results into (4) gives

1

4η
≤
∫ 4

2

dx

x2
≤
∫ 4

2

dx

x2
≤ η

4
,

for all n ≥ 1, where η = 21/n. Let n → ∞ when η → 1 to see that we must

have equality in the centre, i.e.

∫ 4

2

dx

x2
=

∫ 4

2

dx

x2
,

and so, by definition, the function is Riemann integrable over [2, 4]. The
common value, 1/4, is therefore the value of the integral. �

Important The upper and lower integrals exist for all functions but not all
functions are Riemann integrable.

Example 4.23 Let f : [0, 1] → R be given by

f(x) =

{

1 if x rational

0 if x irrational.

Show that f is not Riemann integrable over [0, 1].
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Solution Let P be any partition of [0, 1]. Then in any sub-interval [xi−1, xi]
we can find an irrational number, so mi = 0, and find a rational number, so
Mi = 1. Thus

L(P , f) =
n
∑

i=1

0 (xi − xi−1) = 0 and U(P , f) =
n
∑

i=1

1 (xi − xi−1) = 1,

the last result following from the sum of the lengths of the sub-intervals
equals the length of the total interval [0, 1].

Hence
∫ 1

0

f(x) dx = lub {L(P , f) : P} = lub {0} = 0.

Similarly,

∫ 1

0

f(x) dx = glb {U(P , f) : P} = glb {1} = 1.

Since the lower and upper integrals are different we deduce that f is not
Riemann integrable over [0, 1]. �

This result is not ideal. This function differs from the function that is
zero throughout [0, 1] on only a countable number of points. Since the zero
function is integrable, it would be nice if f(x) were integrable.

Return to Theory

If there were more time I would prove the following results.

Theorem 4.24 If f is continuous on [a, b] then f is Riemann integrable on
[a, b].

Proof Not given. �

Theorem 4.25 If f is monotonic on [a, b] then f is Riemann integrable on
[a, b].

Proof Not given but should not be hard for the interested student for it
follows quickly from the

L(Pn, f) = U(Pn, f) +
b− a

n
(f(a)− f(b))

seen earlier. �
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Theorem 4.26 If the bounded function f is Riemann integrable on [a, b]
then |f |, defined as |f | (x) = |f (x)|, is also Riemann integrable over [a, b]
and

∣

∣

∣

∣

∫ b

a

f

∣

∣

∣

∣

≤
∫ b

a

|f | . (5)

Proof Not given. �

The final result of the course concerns the relationship between integra-
tion and differentiation.

Theorem 4.27 Fundamental Theorem of Calculus.

Assume f is bounded on [a, b] .

1) If f is Riemann Integrable on [a, b] then

F (x) =

∫ x

a

f(t) dt

is continuous on [a, b].

2) Further, if f is continuous on [a, b] then F is differentiable on (a, b)
and F ′(x) = f(x) for all x ∈ (a, b) .

Proof

1) We wish to verify the ε − δ definition that F is continuous on [a, b]. We
do it here only for the interior points, i.e. those in (a, b). I leave it to the
interested student to check the definition at the end-points a and b using
one-sided limits.

We are assuming that f is bounded thus there exists N > 0 : |f(x)| ≤ N
for all x ∈ [a, b].

Let c ∈ (a, b) be given. Let ε > 0 be given. Choose δ = ε/N > 0. Assume
|x− c| < δ.

Split into two cases. If x > c consider

|F (x)− F (c)| =

∣

∣

∣

∣

∫ x

a

f(t) dt−
∫ c

a

f(t) dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ x

c

f(t) dt

∣

∣

∣

∣

≤
∫ x

c

|f(t)| dt by (5)

≤
∫ x

c

Ndt = N (x− c) .
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If x < c consider |F (x)− F (c)| = |F (c)− F (x)| ≤ N (c− x) by above
with c and x interchanged (since c > x). So, in all cases,

|F (x)− F (c)| ≤ N |x− c| < Nδ = ε.

Hence we have verified the definition that F is continuous at c and thus
on (a, b).

2) We wish to verify the ε− δ definition that

lim
x→c

F (x)− F (c)

x− c
= f(c)

for all points c in (a, b)

Let c ∈ (a, b) be given. Let ε > 0 be given.

We are told that f is continuous at c in which case there exists δ > 0
such that if |t− c| < δ then |f(t)− f(c)| < ε.

Assume x satisfies 0 < |x− c| < δ.

Split into two cases. If x > c consider
∣

∣

∣

∣

F (x)− F (c)

x− c
− f(c)

∣

∣

∣

∣

=
1

|x− c| |(F (x)− F (c))− (x− c) f(c)|

=
1

|x− c|

∣

∣

∣

∣

∫ x

c

f(t) dt−
∫ x

c

f(c) dt

∣

∣

∣

∣

≤ 1

|x− c|

∫ x

c

|f(t)− f(c)| dt by (5)

≤ 1

|x− c|

∫ x

c

εdt = ε.

Here we have used the fact that c ≤ t ≤ x implies |t− c| ≤ |x− c| < δ
which in turn implies |f(t)− f(c)| < ε, used inside the integral.

If x < c the same result follows on writing
∣

∣

∣

∣

F (x)− F (c)

x− c
− f(c)

∣

∣

∣

∣

=

∣

∣

∣

∣

F (c)− F (x)

c− x
− f(c)

∣

∣

∣

∣

.

So in all cases
∣

∣

∣

∣

F (x)− F (c)

x− c
− f(c)

∣

∣

∣

∣

< ε.
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Thus

lim
x→c

F (x)− F (c)

x− c

exists with limit f (c), i.e. F is differentiable at c, with derivative f(c). �

That f is integrable is not sufficient to say that F (x) =
∫ x

a
f(t) dt is dif-

ferentiable let alone that it satisfies F ′(x) = f(x). We can see this by an
example.

Example 4.28 Define f on [0, 2] by

f(x) =

{

0 if 0 ≤ x ≤ 1

1 if 1 < x ≤ 2.

What is F (x)? What is F ′(1)?

Solution left to student. �

In this example f is not continuous at x = 1. Thus, we need the extra
condition that f is continuous which gives us both that F (x) is differentiable
with F ′(x) = f(x).

How to use the Fundamental Theorem of Calculus? The second part
of the theorem gives a way of evaluating

∫ x

a
f(t) dt for continuous f .

Example Consider

f(x) =
1√

x2 + 1
,

which is continuous on R. Therefore F (x) =
∫ x

0
f(t) dt satisfies F ′(x) = f(x)

for all x ∈ R. Yet, on Problem Sheet 3 we found that

d

dx
sinh−1 x =

1√
x2 + 1

for all x ∈ R. So

d

dx
F (x) =

d

dx
sinh−1 x, i.e.

d

dx

(

F (x)− sinh−1 x
)

= 0

for all x ∈ R. The only function whose derivative is zero for all x is the
constant function. Hence

F (x)− sinh−1 x = c
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for some c ∈ R. That is
∫ x

0

f(t) dt = F (x) = sinh−1 x+ c.

What is the value of c? Put x = 0 to find c = sinh−1 0− F (0) = 0. Thus

∫ x

0

dt√
t2 + 1

= sinh−1 x.

(Of course, you could evaluate this integral by substitution, but we haven’t
had time in this course to justify substitution.) �

Definition 4.29 If f is continuous on (a, b) and F is continuous on [a, b]
and differentiable on (a, b) with F ′(x) = f(x) for all x ∈ (a, b) then F is a
primitive for f .

Note that we say that F is a primitive for f , not the primitive. This is because

constants vanish under differentiation and so if F is a primitive for f then so is

F (x)+c for any constant c. But more is true, if F1 and F2 are two primitives for f
then F ′

1(x) = f(x) = F ′
2(x) and so (F1 − F2)

′(x) = 0. Thus F1(x)−F2(x) = c
for some constant c. Hence if F is a primitive then so is F +c for any constant c
and all primitives are of this form.

Hence, if you have a function continuous on [a, b] you look in the “big
book” of derivatives to find a derivative equal to your function. You then
know that the integral of your function is equal (up to a constant) to the
function of which you took the derivative to get f(x). Further examples of
this nature can be found on the problem sheet.
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